GCE

Mathematics (MEI)

Advanced GCE 4763

Mechanics 3

Mark Scheme for June 2010

1(a)(i)	$\mathrm{AP}=\sqrt{2.4^{2}+0.7^{2}}=2.5$ Tension $T=70 \times 0.35 \quad(=24.5)$ Resultant vertical force on P is $2 T \cos \theta-m g$ $\begin{aligned} & =2 \times 24.5 \times \frac{2.4}{2.5}-4.8 \times 9.8 \\ & =47.04-47.04=0 \end{aligned}$ Hence P is in equilibrium	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { E1 } \end{aligned}$	6	Attempting to resolve vertically For $T \times \frac{2.4}{2.5}$ (or $T \cos 16.3^{\circ} \mathrm{etc}$) For 4.8×9.8 Correctly shown
(ii)	$\mathrm{EE}=\frac{1}{2} \times 70 \times 0.35^{2}$ Elastic energy is 4.2875 J	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	(M0 for $\frac{1}{2} \times 70 \times 0.35$) Note If 70 is used as modulus instead of stiffness: (i) M1A0M1B1B1E0 (ii) M1 A1 for 1.99
(iii)	Initial $\mathrm{KE}=\frac{1}{2} \times 4.8 \times 3.5^{2}$ By conservation of energy $\begin{aligned} 4.8 \times 9.8 h & =2 \times 4.2875+\frac{1}{2} \times 4.8 \times 3.5^{2} \\ 47.04 h & =8.575+29.4 \end{aligned}$ Height is 0.807 m (3 sf)	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { F1 } \\ & \text { A1 } \end{aligned}$	4	Equation involving EE, KE and PE (A0 for 0.8$) \quad \mathrm{ft}$ is $\frac{2 \times(\mathrm{ii})+29.4}{47.04}$
(b)(i)	$\begin{aligned} & {[\text { Force }]=\mathrm{MLT}^{-2}} \\ & {[\text { Stiffness }]=\mathrm{MT}^{-2}} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	2	Deduct 1 mark if units are used
(ii)	$\begin{aligned} \mathrm{LT}^{-1} & =\mathrm{M}^{\alpha}\left(\mathrm{MT}^{-2}\right)^{\beta} \mathrm{L}^{\gamma} \\ \gamma & =1 \\ \beta & =\frac{1}{2} \\ 0 & =\alpha+\beta \\ \alpha & =-\frac{1}{2} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$		Considering powers of M When [Stiffness] is wrong in (i), allow all marks ft provided the work is comparable and answers are non-zero

\begin{tabular}{|c|c|c|c|c|}
\hline 2 (i) \& \begin{tabular}{l}
\(R \cos \theta=m g \quad\) [\(\theta\) is angle between OB and vertical]
\[
R \times 0.8=0.4 \times 9.8
\] \\
Normal reaction is 4.9 N
\end{tabular} \& M1
A1
A1 \& 3 \& Resolving vertically \\
\hline (ii) \& \begin{tabular}{l}
\[
\begin{align*}
R \sin \theta \& =m \frac{v^{2}}{r} \\
4.9 \times 0.6 \& =0.4 \times \frac{v^{2}}{1.5} \\
v^{2} \& =11.025 \tag{3sf}
\end{align*}
\] \\
Speed is \(3.32 \mathrm{~m} \mathrm{~s}^{-1}\)
\end{tabular} \& M1
A1

A1 \& \& | For acceleration $\frac{v^{2}}{r}$ or $r \omega^{2}$ or $4.9 \times 0.6=0.4 \times 1.5 \omega^{2}$ |
| :--- |
| ft is $1.5 \sqrt{R}$ |

\hline (iii) \& By conservation of energy

$$
\begin{aligned}
\frac{1}{2} m u^{2} & =m g \times 2.5 \\
u^{2} & =5 g \quad(u=7) \\
R-m g & =m \times \frac{u^{2}}{2.5} \\
R-m g & =2 m g \\
R & =3 m g
\end{aligned}
$$ \& M1

A1
M1

E1 \& \& | Equation involving KE and PE |
| :--- |
| Vertical equation of motion (must have three terms) |
| Correctly shown or $R=11.76$ and $3 \times 0.4 \times 9.8=11.76$ |

\hline \[
$$
\begin{aligned}
& \text { (iv) } \\
& \text { (v) }
\end{aligned}
$$

\] \& | $\begin{aligned} \frac{1}{2} m v^{2} & =m g \times 2.5 \cos \theta \\ v^{2} & =5 g \cos \theta \end{aligned}$ $R-m g \cos \theta=m \times \frac{v^{2}}{2.5}$ |
| :--- |
| When $R=2 \mathrm{mg}$ ($=7.84$) , $\begin{aligned} 2 m g-m g \cos \theta & =\frac{m v^{2}}{2.5} \\ 2 m g-\frac{m v^{2}}{5} & =\frac{m v^{2}}{2.5} \\ 7.84-0.08 v^{2} & =0.16 v^{2} \\ v^{2} & =\frac{98}{3} \end{aligned}$ |
| Speed is $5.72 \mathrm{~ms}^{-1}$ |
| (3 sf) |
| $\cos \theta=\frac{v^{2}}{5 g}=\frac{2}{3} \quad\left(\theta=48.2^{\circ}\right.$ or 0.841 rad$)$ |
| Tangential acceleration is $g \sin \theta$ |
| Tangential acceleration is $7.30 \mathrm{~ms}^{-2}$ | \& \& \& | Mark (iv) and (v) as one part Equation involving KE, PE and an angle (θ is angle with vertical) [$\frac{1}{2} m v^{2}=m g h$ can earn M1A1, but only if $\cos \theta=h / 2.5$ appears somewhere] |
| :--- |
| Equation of motion towards O (must have three terms, and the weight must be resolved) |
| Obtaining an equation for v Obtaining an equation for θ These two marks are each dependent on M1M1 above |
| [$g \sin \theta$ in isolation only earns M1 if the angle θ is clearly indicated] |

\hline
\end{tabular}

3 (i)	Volume is $\begin{aligned} &=\pi\left[-\frac{1}{x}\right]_{1}^{5}\left(=\frac{4}{5} \pi\right) \\ & \int \pi x y^{2} \mathrm{~d} x=\int_{1}^{5} \pi x\left(\frac{1}{x}\right)^{2} \mathrm{~d} x \\ &=\pi[\ln x]_{1}^{5} \quad(=\pi \ln 5) \\ & \bar{x}=\frac{\pi \ln 5}{\frac{4}{5} \pi}=\frac{5 \ln 5}{4} \quad(2.012) \end{aligned}$	M1 A1 M1 A1 A1	π may be omitted throughout Limits not required For $-\frac{1}{x}$ Limits not required For $\ln x$ $S R$ If exact answers are not seen, deduct only the first A1 affected
(ii)		M1 A1 M1 A1 M1 A1 A1	Limits not required For $\ln x$ Limits not required For $\int\left(\frac{1}{x}\right)^{2} \mathrm{~d} x$ For $-\frac{1}{2 x}$
(iii)	CM of R_{2} is $\left(\frac{2}{5 \ln 5}, \frac{4}{\ln 5}\right)$	B1B1 ft	Do not penalise inexact answers in this part
(iv)	$\begin{aligned} & \bar{x}=\frac{(\ln 5)\left(\frac{4}{\ln 5}\right)+(\ln 5)\left(\frac{2}{5 \ln 5}\right)+(1)\left(\frac{1}{2}\right)}{\ln 5+\ln 5+1} \\ & \text { CM is }\left(\frac{4.9}{2 \ln 5+1}, \frac{4.9}{2 \ln 5+1}\right) \quad(1.161,1.161) \end{aligned}$	B1 M1 M1 A1 cao	For CM of R_{3} is $\left(\frac{1}{2}, \frac{1}{2}\right)$ (one coordinate is sufficient) Using $\sum m x$ with three terms Using $\frac{\sum m x}{\sum m}$ with at least two terms in each sum

4 (i)	$\left\{\begin{aligned} v=\frac{\mathrm{d} x}{\mathrm{dt} t} & =A \omega \cos \omega t-B \omega \sin \omega t \\ a=\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}} & =-A \omega^{2} \sin \omega t-B \omega^{2} \cos \omega t \\ & =-\omega^{2}(A \sin \omega t+B \cos \omega t)=-\omega^{2} x \end{aligned}\right.$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { E1 } \end{aligned}$	3	Finding the second derivative Correctly shown
(ii)	$\begin{aligned} & B=-16 \\ & \omega=0.25 \\ & A=30 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B2 } \end{aligned}$		When A is wrong, give B 1 for a correct equation involving A [e.g. $A \omega=7.5$ or $\left.7.5^{2}=\omega^{2}\left(A^{2}+B^{2}-16^{2}\right)\right]$ or for $A=-30$
(iii)	Maximum displacement is $(\pm) \sqrt{A^{2}+B^{2}}$ Maximum displacement is 34 m Maximum speed is (\pm) 34ω Maximum acceleration is $(\pm) 34 \omega^{2}$ Maximum speed is $8.5 \mathrm{~m} \mathrm{~s}^{-1}$ Maximum acceleration is $2.125 \mathrm{~ms}^{-2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { F1 } \\ & \text { F1 } \end{aligned}$	5	Or $7.5^{2}=\omega^{2}\left(\mathrm{amp}^{2}-16^{2}\right)$ Or finding t when $v=0$ and substituting to find x For either (any valid method) Only ft from $\omega \times$ amp Only ft from $\omega^{2} \times$ amp
(iv)	$\begin{aligned} & v=7.5 \cos 0.25 t+4 \sin 0.25 t \\ & \text { When } t=15, v=7.5 \cos 3.75+4 \sin 3.75 \\ & =-8.44 \end{aligned}$ Speed is $8.44 \mathrm{~m} \mathrm{~s}^{-1}(3 \mathrm{sf})$; downwards	M1 A1	2	
(v)	Period $\frac{2 \pi}{\omega} \approx 25 \mathrm{~s}$, so $t=0$ to $t=15$ is less than one period When $t=15, x=30 \sin 3.75-16 \cos 3.75$ $=-4.02$ Distance travelled is $16+34+34+4.02$ Distance travelled is 88.0 m (3 sf)	M1 M1 M1 A1 cao	4	Take account of change of direction Fully correct strategy for distance

