

Mathematics (MEI)

Advanced GCE 4763

Mechanics 3

Mark Scheme for June 2010

PMT

Mark Scheme

PMT

		1	
1(a)(i)	$AP = \sqrt{2.4^2 + 0.7^2} = 2.5$	M1	
	Tension $T = 70 \times 0.35$ (= 24.5)	A1	
	Resultant vertical force on P is $2T \cos \theta - mg$	M1	Attempting to resolve vertically 2 4
	$=2 \times 24.5 \times \frac{2.4}{2.5} - 4.8 \times 9.8$	B1	For $T \times \frac{2.4}{2.5}$ (or $T \cos 16.3^{\circ} etc$)
		B1	For 4.8×9.8
	= 47.04 - 47.04 = 0 Hence P is in equilibrium	E1	
	Hence F is in equinorium	6	Correctly shown
(ii)	$EE = \frac{1}{2} \times 70 \times 0.35^2$	M1	(M0 for $\frac{1}{2} \times 70 \times 0.35$)
	Elastic energy is 4.2875 J	A1	2
		2	<i>Note</i> If 70 is used as modulus instead of stiffness: (i) M1A0M1B1B1E0
			(ii) M1 A1 for 1.99
(iii)	Initial KE = $\frac{1}{2} \times 4.8 \times 3.5^2$	B1	
	By conservation of energy	M1	Equation involving EE, KE and PE
	$4.8 \times 9.8h = 2 \times 4.2875 + \frac{1}{2} \times 4.8 \times 3.5^2$	F1	1
	47.04h = 8.575 + 29.4		2('') + 20.4
	Height is 0.807 m (3 sf)	A1 4	(A0 for 0.8) ft is $\frac{2 \times (ii) + 29.4}{47.04}$
		-	
(b)(i)	$[Force] = MLT^{-2}$	B1	Deduct 1 mark if units are used
	$[Stiffness] = MT^{-2}$	B1 2	
(**)	1 ~ 2 6 ~		
(ii)	$L T^{-1} = M^{\alpha} (M T^{-2})^{\beta} L^{\gamma}$	B1	
	$\gamma = 1$		
	$\beta = \frac{1}{2}$ $0 = \alpha + \beta$	B1 M1	Considering powers of M
	$0 = \alpha + \beta$ $\alpha = -\frac{1}{2}$		Considering powers of M
	$\alpha = -\frac{1}{2}$	A1 4	When [Stiffness] is wrong in (i), allow all marks ft provided the work is
			comparable and answers are non-zero

June 2010

2 (i)	$R\cos\theta = mg$ [θ is angle between OB and vertical]	M1	Resolving vertically
	$R \times 0.8 = 0.4 \times 9.8$	A1	
	Normal reaction is 4.9 N	A1 3	
(ii)	$R\sin\theta = m\frac{v^2}{r}$	M1	For acceleration $\frac{v^2}{r}$ or $r\omega^2$
	$4.9 \times 0.6 = 0.4 \times \frac{v^2}{1.5}$	A1	or $4.9 \times 0.6 = 0.4 \times 1.5 \omega^2$
	$v^2 = 11.025$ Speed is 3.32 m s ⁻¹ (3 sf)	A1 3	ft is $1.5\sqrt{R}$
(iii)	By conservation of energy	M1	Equation involving KE and PE
()	$\frac{1}{2}mu^2 = mg \times 2.5$	A1	
	$u^2 = 5g$ (<i>u</i> = 7)		
	$R - mg = m \times \frac{u^2}{2.5}$	M1	Vertical equation of motion (must have three terms)
	R - mg = 2mg $R = 3mg$	E1 4	Correctly shown or $R = 11.76$ and $3 \times 0.4 \times 9.8 = 11.76$
(iv) (v)	$\frac{1}{2}mv^2 = mg \times 2.5\cos\theta$ $v^2 = 5g\cos\theta$	M1 A1	Mark (iv) and (v) as one part Equation involving KE, PE and an angle (θ is angle with vertical) $\left[\frac{1}{2}mv^2 = mgh \text{ can earn M1A1, but}\right]$
	$R - mg \cos \theta = m \times \frac{v^2}{2.5}$ When $R = 2mg$ (= 7.84),	M1	only if $\cos \theta = h/2.5$ appears somewhere] Equation of motion towards O (must have three terms, and the weight must be resolved)
	$2mg - mg \cos \theta = \frac{mv^2}{2.5}$ $2mg - \frac{mv^2}{5} = \frac{mv^2}{2.5}$ $7.84 - 0.08v^2 = 0.16v^2$ $v^2 = \frac{98}{3}$	M1 M1	Obtaining an equation for v Obtaining an equation for θ These two marks are each dependent on M1M1 above
	Speed is 5.72 m s ⁻¹ (3 sf) $\cos \theta = \frac{v^2}{5g} = \frac{2}{3}$ ($\theta = 48.2^\circ$ or 0.841 rad)	A1	
	5g 3 (5)		
	Tangential acceleration is $g \sin \theta$	M1	[$g\sin\theta$ in isolation only earns M1 if
	Tangential acceleration is 7.30 m s^{-2} (3 sf)	A1 8	the angle θ is clearly indicated]

June 2010

3 (i)	Volume is $\int_{1}^{5} \pi \left(\frac{1}{x}\right)^2 dx$	M1	π may be omitted throughout Limits not required
	$=\pi\left[-\frac{1}{x}\right]_{1}^{5} (=\frac{4}{5}\pi)$	A1	For $-\frac{1}{x}$
	$\int \pi x y^2 dx = \int_1^5 \pi x \left(\frac{1}{x}\right)^2 dx$	M1	Limits not required
	$=\pi \left[\ln x \right]_{1}^{5} (=\pi \ln 5)$	A1	For ln <i>x</i>
	$\overline{x} = \frac{\pi \ln 5}{\frac{4}{5}\pi} = \frac{5\ln 5}{4} (2.012)$	A1 5	SR If exact answers are not seen, deduct only the first A1 affected
(ii)	Area is $\int_{1}^{5} \frac{1}{x} dx$	M1	Limits not required
	$= \left[\ln x \right]_{1}^{5} (= \ln 5)$	A1	For $\ln x$
	$\int x y dx = \int_{1}^{5} x \left(\frac{1}{x}\right) dx (= \begin{bmatrix} x \end{bmatrix}_{1}^{5} = 4)$	M1	Limits not required
	$\overline{x} = \frac{4}{\ln 5} \qquad (\ 2.485 \)$	A1	
	$\int \frac{1}{2} y^2 dx = \int_1^5 \frac{1}{2} \left(\frac{1}{x}\right)^2 dx$	M1	For $\int \left(\frac{1}{x}\right)^2 dx$
	$= \left[-\frac{1}{2x} \right]_{1}^{5} (=\frac{2}{5})$	A1	For $-\frac{1}{2x}$
	$\overline{y} = \frac{\frac{2}{5}}{\ln 5} = \frac{2}{5\ln 5}$ (0.2485)	A1 7	
(iii)	CM of R_2 is $\left(\frac{2}{5\ln 5}, \frac{4}{\ln 5}\right)$	B1B1 ft 2	<i>Do not penalise inexact answers in this part</i>
(iv)		B1	For CM of R_3 is $(\frac{1}{2}, \frac{1}{2})$
	$a c \left(\begin{array}{c} 4 \\ \end{array} \right), a c \left(\begin{array}{c} 2 \\ \end{array} \right), c \left(\begin{array}{c} 1 \\ \end{array} \right)$	M1	(one coordinate is sufficient) Using $\sum mx$ with three terms
	$\overline{x} = \frac{(\ln 5)\left(\frac{4}{\ln 5}\right) + (\ln 5)\left(\frac{2}{5\ln 5}\right) + (1)\left(\frac{1}{2}\right)}{\ln 5 + \ln 5 + 1}$	M1	Using $\frac{\sum mx}{\sum m}$ with at least two terms
	CM is $\left(\frac{4.9}{2\ln 5+1}, \frac{4.9}{2\ln 5+1}\right)$ (1.161, 1.161)	A1 cao 4	in each sum

4763

			1
4 (i)	$v = \frac{\mathrm{d}x}{\mathrm{d}t} = A\omega\cos\omega t - B\omega\sin\omega t$	B1	
	$a = \frac{d^2 x}{dt^2} = -A\omega^2 \sin \omega t - B\omega^2 \cos \omega t$ $= -\omega^2 (A \sin \omega t + B \cos \omega t) = -\omega^2 x$	M1	Finding the second derivative
	$= -\omega^2 (A\sin \omega t + B\cos \omega t) = -\omega^2 x$	E1 3	Correctly shown
(ii)	B = -16	B1	
	$\omega = 0.25$	B1	
	<i>A</i> = 30	B2 4	When <i>A</i> is wrong, give B1 for a correct equation involving <i>A</i> [e.g. $A\omega = 7.5$ or $7.5^2 = \omega^2(A^2 + B^2 - 16^2)$] or for A = -30
(iii)	Maximum displacement is $(\pm) \sqrt{A^2 + B^2}$	M1	Or $7.5^2 = \omega^2 (\operatorname{amp}^2 - 16^2)$ Or finding <i>t</i> when $v = 0$ and
	Maximum displacement is 34 m	A1	substituting to find <i>x</i>
	Maximum speed is $(\pm) 34\omega$	M1	For either (any valid method)
	Maximum acceleration is $(\pm) 34\omega^2$	1011	For entirer (any valid method)
	Maximum speed is 8.5 m s^{-1}	F1	Only ft from $\omega \times amp$
	Maximum acceleration is 2.125 m s^{-2}	F1 5	Only ft from $\omega^2 \times amp$
(iv)	$v = 7.5 \cos 0.25t + 4 \sin 0.25t$ When $t = 15$, $v = 7.5 \cos 3.75 + 4 \sin 3.75$ = -8.44	M1	
	Speed is 8.44 m s ^{-1} (3 sf); downwards	A1 2	
(v)	Period $\frac{2\pi}{\omega} \approx 25 \mathrm{s}$,		
	so $t = 0$ to $t = 15$ is less than one period		
	When $t = 15$, $x = 30 \sin 3.75 - 16 \cos 3.75$ = -4.02	M1	
	Distance travelled is $16+34+34+4.02$	M1 M1	Take account of change of direction Fully correct strategy for distance
	Distance travelled is 88.0 m (3 sf)	A1 cao	Fully confect sublegy for distance
		4	
		1	